Search results for " graphene"
showing 10 items of 102 documents
Blue luminescent amino-functionalized graphene quantum dots as a responsive material for potential detection of metal ions and malathion
2022
Large amounts of hazardous and toxic substances in the environment require non-toxic, cheap, easy, rapid, and sensitive methods for their detection. Blue luminescent graphene quantum dots (GQDs) were produced by electrochemical cleavage of graphite electrodes followed by gamma irradiation in the presence of ethylenediamine (EDA). Modified dots were able to detect metal ions (Co2+, Pd2+, Fe3+) due to photoluminescence quenching. The highest sensitivity was detected for the sample irradiated at a dose of 25 kGy. The limits of detection (LODs) were 1.79, 2.55, and 0.66 μmol L−1 for Co2+, Fe3+, and Pd2+, respectively. It was observed that GQDs irradiated at 200 kGy act as an ultra-sensitive tur…
Effect of Graphene Nanoplatelets on the Physical and Antimicrobial Properties of Biopolymer-Based Nanocomposites
2016
In this work, biopolymer-based nanocomposites with antimicrobial properties were prepared via melt-compounding. In particular, graphene nanoplatelets (GnPs) as fillers and an antibiotic, i.e., ciprofloxacin (CFX), as biocide were incorporated in a commercial biodegradable polymer blend of poly(lactic acid) (PLA) and a copolyester (BioFlex®). The prepared materials were characterized by scanning electron microscopy (SEM), and rheological and mechanical measurements. Moreover, the effect of GnPs on the antimicrobial properties and release kinetics of CFX was evaluated. The results indicated that the incorporation of GnPs increased the stiffness of the biopolymeric matrix and allowed for the t…
PREPARATION AND CHARACTERIZATION OF BIOPOLYMERIC POROUS STRUCTURES FOR ADVANCED APPLICATIONS
Porous biopolymers received an increasing academic and industrial interest finding application in several fields such as tissue engineering, bioprocess intensification and waste removal. Tissue engineering combines the knowledge of materials science and bioengineering in order to develop structures able to substitute and restore the normal function of injured or diseased tissues. In this context, polymeric 3D or 2D scaffolds are widely investigated as temporary cell guidance during the tissue restore. Porous biomaterials can offer a versatile and cost effective way for immobilization of filamentous microorganisms in submerged fermentation processes for the production of biologically active …
CONTROLLING THE FUNCTIONALIZATION OF CARBON NANOTUBES AND GRAPHENE NANOPLATELETS
2013
The functionalization of carbon nanostructures by diazonium chemistry is a versatile strategy to obtain soluble nanomaterials with degrees of functionalization among the highest ever reported.[1,2] Starting from these premises we have studied the functionalization of single, double and multi-walled carbon nanotubes and graphene nanoplatelets by addition of aryl diazonium salts generated in situ by treatment of 4-substituted anilines with isopentylnitrite. Taking advantage of highly controlled flow synthesis [3-5] and following a thorough purification and characterization protocol (UV-vis, TGA, ATR-IR, AFM and other surface tools), we have investigated the key parameters to obtain both funct…
Large-Cavity Coronoids with Different Inner and Outer Edge Structures
2020
Coronoids, polycyclic aromatic hydrocarbons with geometrically defined cavities, are promising model structures of porous graphene. Here, we report the on-surface synthesis of C168 and C140 coronoids, referred to as [6]- and [5]coronoid, respectively, using 5,9-dibromo-14-phenylbenzo[m]tetraphene as the precursor. These coronoids entail large cavities (>1 nm) with inner zigzag edges, distinct from their outer armchair edges. While [6]coronoid is planar, [5]coronoid is not. Low-temperature scanning tunneling microscopy/spectroscopy and noncontact atomic force microscopy unveil structural and electronic properties in accordance with those obtained from density functional theory calculation…
Tuning the Magnetic Properties of Carbon by Nitrogen Doping of Its Graphene Domains
2015
Here we present the formation of predominantly sp-coordinate carbon with magnetic- and heteroatom-induced structural defects in a graphene lattice by a stoichiometric dehalogenation of perchlorinated (hetero)aromatic precursors [hexachlorobenzene, CCl (HCB), and pentachloropyridine, NCCl (PCP)] with transition metals such as copper in a combustion synthesis. This route allows the build-up of a carbon lattice by a chemistry free of hydrogen and oxygen compared to other pyrolytic approaches and yields either nitrogen-doped or -undoped graphene domains depending on the precursor. The resulting carbon was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM…
Molecular Dynamics of CH
2019
We theoretically investigate graphene layers, proposing them as membranes of subnanometer size suitable for CH4/N2 separation and gas uptake. The observed potential energy surfaces, representing the intermolecular interactions within the CH4/N2 gaseous mixtures and between these and the graphene layers, have been formulated by adopting the so-called Improved Lennard-Jones (ILJ) potential, which is far more accurate than the traditional Lennard-Jones potential. Previously derived ILJ force fields are used to perform extensive molecular dynamics simulations on graphene's ability to separate and adsorb the CH4/N2 mixture. Furthermore, the intramolecular interactions within graphene were explic…
Studies of Reversible Hydrogen Binding in Nano- Sized Materials
2015
Experimental review of materials suitable for reversible hydrogen binding in nanoporous and nanosized structures of materials, based on natural zeolite (clinoptilolite) and graphene (exfoliated electrochemically from raw graphite), were analyzed. Characterization of materials with SEM, XRD, EDS and Raman spectroscopy methods and aspects of synthesis of a nanostructured zeolite and a few-layer graphite material was done in this work. It was established from gas analyzer results that hydrogen mass fraction in natural zeolite ranged from 1.1 % to 1.4 %, but in the few-layer graphite material − from 0.39 % to 0.46 %.
Flat-band superconductivity in periodically strained graphene: mean-field and Berezinskii–Kosterlitz–Thouless transition
2019
In the search of high-temperature superconductivity one option is to focus on increasing the density of electronic states. Here we study both the normal and $s$-wave superconducting state properties of periodically strained graphene, which exhibits approximate flat bands with a high density of states, with the flatness tunable by the strain profile. We generalize earlier results regarding a one-dimensional harmonic strain to arbitrary periodic strain fields, and further extend the results by calculating the superfluid weight and the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature $T_\text{BKT}$ to determine the true transition point. By numerically solving the self-consistency …
Electrochemical detection of dopamine with negligible interference from ascorbic and uric acid by means of reduced graphene oxide and metals-NPs base…
2021
Abstract Dopamine is an important neurotransmitter involved in many human biological processes as well as in different neurodegenerative diseases. Monitoring the concentration of dopamine in biological fluids, i.e., blood and urine is an effective way of accelerating the early diagnosis of these types of diseases. Electrochemical sensors are an ideal choice for real-time screening of dopamine as they can achieve fast, portable inexpensive and accurate measurements. In this work, we present electrochemical dopamine sensors based on reduced graphene oxide coupled with Au or Pt nanoparticles. Sensors were developed by co-electrodeposition onto a flexible substrate, and a systematic investigati…